
Revelio: A Network-Level Privacy Attack in the Lightning Network

Theo von Arx
ETH Zürich

Muoi Tran
ETH Zürich

Laurent Vanbever
ETH Zürich

Abstract—The Lightning Network (LN) is a widely-adopted
off-chain protocol that not only addresses Bitcoin’s scaling
problem but also enables anonymous payments. Prior attacks
have shown that an adversary controlling several peers at the
central position of the network (e.g., by hijacking payment
routes) can deanonymize such payments. However, these
attacks are highly observable or require many parties to
collude.

This paper presents Revelio, a stealthier, passive
network-level privacy attack against LN that exploits its joint
centralization at the application and the network layers.
Indeed, network-level adversaries can see most of the LN
traffic (e.g., five autonomous systems can see up to 80% of all
observable communication channels) despite the encrypted
communication between LN nodes and the widespread usage
of Tor. This comprehensive view allows Revelio adversaries
not only to estimate the payment amount but also to effec-
tively reduce the anonymity size of its endpoints. We show
that the Revelio attack is practical: it perfectly deanonymizes
the senders or the receiver in almost one-third of tested
payments in today’s LN and underlying network topologies.

1. Introduction

Bitcoin is, by far, the most-used and most-successful
cryptocurrency to date, with a market capitalization well
above 400 billion USD as of March 2023. One of the
key appeals of Bitcoin is decentralization: it relies on
no single authority but a sizeable peer-to-peer network
of distributed nodes that use consensus algorithms to
record transactions into a core data structure known as
the blockchain. Bitcoin’s decentralization, however, comes
at the cost of poor scalability and reduced privacy. Infa-
mously, Bitcoin only supports about seven transactions
per second, whereas centralized financial services like
Visa and Mastercard process about 40,000 transactions per
second at peak times [63]. Moreover, Bitcoin transactions
are only pseudo-anonymous and publicly available via the
blockchain [13].

The Lightning Network (LN) is an overlay network
that aims to address Bitcoin scalability and privacy
problems [57]. It enables split-second payments (up to
1,000,000 per second) to be made anonymously, meaning
that no one (except the sender) can determine the sender
and the receiver of a payment. The critical factor for
achieving high transaction rates is the drastic reduction
in the number of required records written to the Bitcoin
blockchain. More specifically, LN nodes use off-chain
payment channels to transact as often as needed and only
write the proofs of opening or closing these channels to
the blockchain. The payments in LN are commonly routed

A

B

CD

E

Autonomous 
System (AS)

Adversary AS

Lightning Network
(LN) node

Figure 1. An example of the Revelio attack against onion-based multi-
hop payments in Lightning Network (LN). To deanonymize the payment
from A to E, an adversary AS correlates network packets from A →
B and C → D based on their timestamps and infers E from public
datasets.

over multiple channels, and the privacy of their informa-
tion (e.g., sender, receiver, and amount) is provided by an
onion-based encryption scheme. LN is particularly popular
and is widely used, boasting more than 17,000 nodes as
of this writing.

Given LN’s popularity, multiple attacks against its
payment privacy guarantees have been proposed [34],
[36], [53], [59], [66], [70]. Thus far, these attacks rely
on the adversary’s ability to actively run LN nodes and
forward transactions. By observing enough channels, the
adversary can deanonymize the sender and the receiver
of a routed payment. While running malicious nodes
is straightforward, maximizing the number of payments
they see is not and requires active attacks (e.g., hijacking
payment routes [72]). These attacks are, therefore, highly
observable. Moreover, they cannot deanonymize single-
hop payments.

This paper shows that deanonymization attacks in LN
can be both passive (thus, stealthier) and applicable to
single-hop payments (thus, more inclusive) with network-
level adversaries, such as malicious Autonomous Systems
(ASes). To that end, we describe Revelio, a novel network-
level attack that breaks the payment anonymity guaran-
tees of LN. Unlike existing attacks that require running
many LN nodes, Revelio adversaries deanonymize LN
payments by passively analyzing their network traffic. As
the example in Figure 1 shows, LN traffic belonging to
the same multi-hop payment may cross an adversarial AS
multiple times, either because several nodes are hosted in
this AS or because of Internet routing. This broad view
allows Revelio adversaries to correlate application-level
messages transiting (respectively not transiting) through
their network and infer the payment’s sender, receiver,
and amount despite the LN traffic being encrypted. Un-
derstandably, the power of a Revelio adversary depends on



the number of channels she sees. Unfortunately, because
the LN topology is centralized at both the application- [44]
and the network-level [17], powerful attackers exist. In
particular, our updated and more comprehensive analysis
shows that a single AS, such as Amazon, can see up to
34% of all observable LN channels; and that the top 5
ASes together can see up to 80% of all observable LN
channels.

Revelio is the first AS-level privacy attack against LN,
to the best of our knowledge; yet, network adversaries
have been a worrying threat in a broader scope for a long
time. While being active, AS attackers can launch BGP
hijack [65] to bypass laws [6], obtain bogus Public Key
Infrastructure (PKI) certificates [11], compromise Tor’s
anonymity [68], or disrupt blockchain consensus [4], [62].
Active network attacks also include traffic dropping for
censorship attacks [74] or traffic injection for DDoS at-
tacks [47] and adding advertisements [51]. Without using
such active capabilities, AS-level attackers (e.g., nation-
state adversaries) can still passively analyze network traf-
fic to deanonymize Tor users [26], [33], launch nation-
wide surveillance attacks [2], [27], or reveal the trans-
action history of cryptocurrency users [3] (e.g., for tax
enforcement [18] or prosecution [8]). These prior works
suggest the threat of network attacks against LN; thus,
studying them is crucial.

Deanonymizing LN payments with network adver-
saries, however, poses some unique challenges. First, the
communication between LN is encrypted, and most LN
nodes run Tor to hide their IP addresses. We demon-
strate that Revelio adversaries can still learn the types of
LN messages being transmitted and the communication
endpoints as long as at least one of them is not behind
Tor. Second, multiple transactions may have their traffic
crossing the adversarial AS together, making the network
packet correlation difficult. We show how Revelio adver-
saries can use the arrival timestamps of the packets to
distinguish payments, which is indeed possible for real-
istic transaction throughputs. Third, Revelio adversaries
often do not see all channels involved in a payment but
only a subset of them. Reconstructing the complete path
from these partial observations requires a computationally-
intensive process of inverting LN path computations be-
cause varying payment amounts result in different paths.
To resolve this, we propose an efficient path reconstruction
procedure based on binary search, considerably speeding
up path calculations. In particular, we show how a Rev-
elio attacker can estimate a narrower range of possible
payment amounts purely based on observed channels and
their public parameters.

Our evaluations with the live LN network and simu-
lations show that the Revelio attack is highly effective. In
the median case, network-level attackers manage to reduce
the range of possible payment amounts by five orders
of magnitude. Worse yet, we show that the top 5 ASes
can reduce the anonymity sets to one sender (respectively
receiver) for almost one-third of observed payments.

To sum up, we make the following key contributions:

• We analyze the LN topology from a network-level
perspective and show that the five most central
ASes on the LN topology can already observe up
to 80% of all channels (§3).

• We propose Revelio, an AS-level attack that cap-
tures LN traffic, groups them into multi-hop pay-
ments, and deanonymizes the payment sender, re-
ceiver, and amount (§4, §5, §6).

• We show that five colluding ASes can reduce the
sender or receiver anonymity set size from more
than 17, 000 to 1 in more than 32% of cases (§7).

• We discuss both short- and long-term counter-
measures to our attack and sketch possible future
works (§8).

2. Background: Lightning Network

The Lightning Network (LN) [57] is a protocol that
allows two users with dedicated clients (e.g., lnd [39],
eclair [1], CLN [19], electrum [76]) to make arbitrary
off-chain transactions via a channel secured by an on-
chain Bitcoin transaction. In particular, two LN parties
establish a channel by depositing their funds in a 2-of-
2 multi-signature Bitcoin contract. The capacity of the
channel is the sum of two initial funds. After that, two
channel endpoints may make payments to each other,
which change their funds (or balances) accordingly. They
can close the channel with signatures from both parties,
and the latest balances will be returned to them. By taking
most of the transactions off-chain and writing only trans-
actions for channel opening and closing to the blockchain,
LN significantly improves the transaction throughput in
Bitcoin. Note that the LN network is entirely independent
of the Bitcoin network, although a user may run both LN
and Bitcoin clients, and LN nodes typically connect to
Bitcoin nodes to receive updated blockchain information.

LN nodes form a peer-to-peer (P2P) network when es-
tablishing channels with each other. Nodes use a gossiping
protocol to share updated information with others in this
P2P network, such as their addresses or newly-established
channels. By doing so, nodes are quickly updated with the
entire LN topology. Each LN node is identified by a public
key, called node ID, and optionally associated with one
or more IPv4, IPv6, or .onion addresses. When a node
does not advertise any address to the P2P network, it is
considered as unknown. Unknown nodes do not receive
channel initiations (perhaps, to avoid unwanted channels
with unfamiliar nodes); however, they can still actively
open channels to others.

Users without a direct channel still can transact using
multi-hop payments, such as A to node E in Figure 1.
The payment is first initiated when the receiver (e.g.,
E) generates an invoice including the hash H(s) of a
secret s, an amount amt in sat (i.e., satoshi) where
1 sat = 10−8bitcoin1, and sends it to the sender (e.g.,
A) via an out-of-band medium. Node A then computes a
path to node E through one or more intermediate nodes
(e.g., B, C, D), which impose a small fee for routing the
payment. The selected routing path is usually the shortest
and cheapest path from the sender to the receiver, although
different LN clients implement the path calculation dif-
ferently [72]. Also, the cheapest paths between two nodes
may differ for different payments because parts of the

1. LN also supports msat (i.e., millisatoshi) where 1msat =
10−3sat. Still, it is only usable within LN, e.g., for calculating routing
fee.

2



routing fees are proportional to the routed amounts. Next,
the sender constructs an onion-based Sphinx [21] packet
destined to the receiver that consists of the invoice (i.e.,
H(s) and amt) and forwards it to the first node on the
route. When an intermediate node (e.g., C) receives such
an onion-based packet, it issues a Hashed-Time Locked
Contract (HTLC) [57] to ensure the next-hop node (e.g.,
D) can redeem amt upon revealing the correct secret
s. Once the receiver finds the correct information in the
packet, it reveals the secret s so intermediate nodes can
redeem amt sequentially in the reversed direction (e.g., D,
C, then B). A multi-hop payment thus can be considered
as consisting of multiple, independent payments between
consecutive nodes along the path. If the above steps fail,
the sender will receive failure errors from other nodes and
have to retry with a different path.

Under the LN specifications (e.g., [40], [42], [43]),
LN payments are designed to be not only scalable but also
privacy-preserving. First, payments between two users are
not broadcast to the LN network via the gossiping pro-
tocol but restricted only between them, hence becoming
oblivious for off-path nodes. Moreover, LN enforces the
onion-based routing for multi-hop payments to ensure that
intermediate nodes cannot learn other nodes on the path
except their predecessor and successor. At the network
level, the transmitting packets are obfuscated under the
Noise Protocol Framework so that packets of the same
transaction between different hops do not share any cor-
relating information. Without such efforts in protecting
payment privacy, LN users would suffer from large-scale
privacy invasion or surveillance in which their payment
information (e.g., timing, amount, involved parties, corre-
lated IP addresses) is directly exposed to adversaries. Note
that existing privacy protections in Bitcoin (e.g., pseudo-
anonymous address [35], transaction diffusion [25]) do not
apply to LN payments because LN users do not interact
with Bitcoin network when transacting off-chain.

3. The AS Topology of LN’s P2P Network

In this section, we study the AS topology of the
P2P network of LN using publicly-available data. We
first present our methodology for constructing this AS
topology (§3.1). We then analyze the topology, showing
which ASes can intercept LN traffic and in which por-
tion (§3.2). Our study complements existing work on the
centralization of LN at the application layer (e.g., [58],
[63], [79]) and shows that the LN is also centralized at
the AS-level.

3.1. Methodology

Constructing the AS topology from the network of LN
nodes requires mapping each LN node to the AS hosting
it and a computation of the AS path between any two
ASes. Here, we specify how to collect the necessary data
and describe the AS topology construction.

Data collection. We first collected the addresses of
all LN nodes by taking a snapshot of the entire LN
topology on 29 June 2022 using an lnd client and its
built-in describegraph command. Because all LN nodes
share the identical view of the LN topology most of the
time, taking a topology snapshot from a single node is

unknown

.onion

IPv4

IPv6

2306

12410

3890

90

Figure 2. Number of announced address types. Most nodes try to hide
their IP address: only 3890 out of 17,644LN nodes announce an IPv4
address.

sufficient, as demonstrated in previous works (e.g., [12],
[20], [81]). This snapshot, which also is used throughout
this paper, consists of 17,644 nodes in its most significant
connected component and 80,932 channels in total. As LN
nodes may run behind Tor, we downloaded the list of 1524
available Tor exit relays in June 2022, including their IP
addresses and the probability of being chosen [69].

For mapping an IP address to its AS, we used the
RouteViews IP-prefix-to-AS dataset [75] released in June
2022. At the same time, we also downloaded datasets
for the AS path calculation, including the AS business
relationships [15] and IXP links [16].2 In total, this data
includes 18,968 ASes, 1063 IXPs, and 6,729,747 links.

AS path calculation. The calculation of AS paths
between two given IP addresses has been a research
question for decades [46]. Without direct access to the
source of the traffic (e.g., LN nodes), one can estimate the
AS paths with a high accuracy [73], by simulating the de
facto AS-level routing protocol, namely Border Gateway
Protocol (BGP), at each AS. Following this approach, we
estimate AS paths between the ASes hosting two given
LN nodes. In particular, we build the AS-level topology
of the Internet reflecting the business relationship (e.g.,
provider, customer, peer) between ASes [15]. After that,
we simulate ASes calculate the forwarding paths to each
other with the following widely-perceived BGP policies:
(1) ASes prefer routing through customers over peers and
peers over providers; (2) the shortest AS path is preferred;
(3) an arbitrary method (e.g., smaller AS number) is used
as a tie-breaker if multiple best paths exist [28].

Note that we calculate not only the AS paths between
two LN having IPv4 or IPv6 addresses but also between
randomly selected Tor exit relays [69] and LN nodes with
an IP address. To simulate the BGP routing of a node with
an unknown address, we randomly assign an address to it
according to the distribution of known addresses. In our
simulation, the BGP paths can be asymmetric [68].

3.2. Topology Analysis

We analyze the AS topology of LN’s P2P network
and show its centralization. First, we show the address
distribution of LN nodes collected in our snapshot in
Figure 2. In this snapshot, only about 23% of LN nodes
are announcing a public address (e.g., IPv4, IPv6). More
than 70% of the LN nodes have Tor enabled to hide their
addresses or listen for other connections over Tor. We

2. The dataset of IXP links is released only in April 2022.

3



100 101 102 103

Number of ASes
0

20

40

60

80

100
%

 o
f o

bs
er

ve
d 

ch
an

ne
ls

Figure 3. Cumulative percentage of observed channels. A few ASes
have an extremely high centrality, e.g., the top 5 ASes see 40% of
all channels, equivalent to 80% of channels that can be observed.

0 5000 10000 15000
Indices of node

0

1000

2000

3000

No
de

 d
eg

re
e

Nodes with an IPv4/IPv6 address
Nodes without a public address

Figure 4. Nodes with high degrees typically use public addresses, e.g.,
60% of all the nodes with a degree of at least 100 advertise an IPv4 or
IPv6 address.

also note roughly 13% of LN nodes are unknown. These
results are consistent with previous studies [58], [63], [79].

In Figure 3, we illustrate the portion of LN channels
whose traffic can be observed by ASes on the BGP routes
between channel endpoints. Note that if both endpoints of
a channel use Tor, the traffic is not observable by ASes
because it does not leave the Tor network. In total, 50.7%
(41,027 out of 80,932) of channels in our snapshot are
observable. Figure 3 shows that a few ASes control a
large number of observable channels. For instance, the top
5 central ASes see 40% of all channels, accounting for
80% of all channels that can be observed. Among them,
AS14618 (Amazon) has the highest centrality for seeing
16.9% channels, or 34% of all observable channels, al-
though it hosts only 2.8% of LN nodes in the network.

To understand why many channels are still observable
when the majority of nodes are using onion services,
we measure the degree of all nodes (i.e., the number of
their channels) and plot them in Figure 4. Interestingly,
most central LN nodes (i.e., with the highest degrees) do
advertise IPv4 and/or IPv6 addresses. For example, 60%
of all the nodes with a degree of at least 100 advertise
an IP address. All LN nodes with a degree of no less
than 300 also have an IPv4 or IPv6 address. One possible
explanation is that advertising an IPv4 or IPv6 address
makes an LN node more accessible to others when per-
forming payment routing. The node with a public address,

thus, can gradually become a payment hub, effectively
earning more routing fees. Inherently, this increases the
channels controlled by the underlying ASes, as can be
seen previously.

In summary, the AS topology of LN is heavily cen-
tralized with a large portion of channels controlled by a
few ASes, hinting at a worrying threat from such AS-level
adversaries.

4. The Revelio Attack

In this section, we present the overview of the Revelio
attack. In §4.1, we introduce the threat model of a passive
AS-level adversary, which contrasts models used in prior
work that consider colluding central LN nodes. We then
present the adversary’s goals to learn the payment amount
as well as to break sender/receiver anonymity and show
the anonymity metric used for the evaluation. Finally, we
describe two high-level steps of the Revelio attack in §4.2.

4.1. Threat Model

We consider a passive AS-level adversary in this
work. The attacker’s primary goal is to deanonymize LN
payments by learning the payment amounts as well as
the payments’ senders and receivers. In the process of
deanonymization, the attacker may also learn the timing of
the payments and the addresses associated with the payers
and payees. We further define the anonymity metric that
will be used to evaluate the effectiveness of the attack.

Adversarial capabilities. We consider a network ad-
versary who fully controls a single AS network, which
we call a malicious AS. The adversary can inspect and
record any packets traversing its network along with their
other metadata, such as the timestamps when each packet
is forwarded. Typical Internet Service Providers (ISPs)
already have such capabilities [47], [51].

We assume the attacker may access the publicly-
available data, such as the datasets for AS path estimation.
Following this assumption, we allow the adversary to run
an LN node and collect the updated topology information
(e.g., node IDs, node addresses, channels) of the LN’s
P2P network. Similarly, the attacker is also aware of the
algorithms for estimating AS paths between two ASes (c.f.
Section 3) as well as the algorithms for calculating LN
payment paths in open-source LN clients (e.g., lnd, eclair,
CLN, electrum) [72].

The adversaries, however, remain passive and limited
to AS-level, meaning they refrain from active actions (e.g.,
tampering or delaying packets, making or forwarding LN
payments) and only see potentially encrypted traffic at the
AS level. While passive adversaries have been considered
in prior privacy attacks in LN [34], [53], [59], [66], [70],
Revelio attack is the first to consider the privacy threat
from AS-level adversaries. Unlike existing works, Revelio
adversaries do not require controlling multiple LN nodes
at central locations, which is non-trivial without payment
hijacking attacks [72], to see a large portion of LN traffic.
Instead, multiple ASes are already in such a position (c.f.
Section 3). On the other hand, the Revelio adversaries do
not see application-level information of LN payments like
existing attacks, such as the payment amounts.

4



Adversarial goals. The first goal of the adversary is to
break the off-path payment secrecy [34], i.e., parties not
involved in the payment routing should not learn anything
about the payment amount. Since the computation of the
payment path between two LN nodes also depends on
the payment amount, breaking payment secrecy helps to
achieve the second goal: The Revelio adversary wants to
break the on-path relationship anonymity [34], i.e., no
one on the path should learn the path’s endpoints. More
generally, the Revelio adversary aims to reduce the set of
possible senders and receivers, which we call the sender
and receiver anonymity set, respectively. We formally
define the metric related to these two goals below.

Anonymity metric. As a metric for payment secrecy,
we compute how close the adversary’s estimate is to
the payment amount. For this, we consider the order of
magnitudes of difference between the amount and the
estimation.

The metric for the relationship anonymity is defined as
follows: Let A be a malicious AS. Let Ps,t be a multi-hop
payment from node s to t. We define the path anonymity
set of Ps,t with respect to A as the set of node pairs P ,
such that for every (u, v) ∈ P , the adversary A can not
distinguish the multi-hop payment Ps,t from Pu,v going
from u to v. We further define the sender anonymity set
S = {u|∃(u, v) ∈ P} and the receiver anonymity set
R = {v|∃(u, v) ∈ P}, both with respect to the multi-
hop payment Ps,t and the adversary A. The larger these
anonymity sets are, the better the relationship anonymity
is for the sender, respectively receiver of the multi-hop
payment.

In this work, we directly look at the size of the
anonymity sets and refrain from using precision and re-
call (e.g., [34], [59]) because this metric only models
anonymity as a binary decision, i.e., whether the guess
is correct. We also choose not to use entropy (e.g., [66])
as an anonymity metric as its computation does not scale
for all possible LN paths with different payment amounts.

4.2. Attack Overview

The Revelio attack consists of two high-level steps: a
traffic monitoring phase (Step I) and a simulation-based
deanonymization phase (Step II).

[Step I] Traffic monitoring (§5). In this step, the at-
tacker monitors packets at the network-level and abstracts
the observed traffic into application layer information. As
visualized in Figure 5, this phase has three substeps. In
Step I-➀, the attacker identifies all LN channels having
network traffic transited through the adversarial AS. In
particular, the attacker maps the IP address of the observed
packets’ source and destination to the node IDs of the
channel endpoints. This knowledge allows the attacker
to map a payment observed on the wire to the involved
LN parties in Step I-➁. As shown in Figure 5, multiple
payments may cross the adversarial AS. The attacker
then groups them into multi-hop payments based on the
recorded timestamps of their associated packets in Step
I-➂. The result of Step I is a partial path containing all
LN nodes involved in a multi-hop payment.

[Step II] Deanonymizing senders and receivers (§6).
In this deanonymization step, the adversary aims to deduce
the sender and receiver from the partial path of node IDs

[Step I] Traffic Monitoring (§5)
Identify endpoints of 
observed channels

Observe payments
on the wire

Group payments into
multi-hop payments

[Step II] Deanonymizing Sender and Receiver (§6)

identify observed 
channels1

observe 
payments2

group payments3

1 2 3

estimate payment 
amount1

prune channels2

identify possible senders and receivers3

Simulate traffic to
estimate the amount

Prune channels that 
do not support amount

Identify sender and
receiver sets1 2 3

Figure 5. The two main steps of the Revelio attack. In the traffic
monitoring step, a malicious AS abstracts a partial path of a multi-hop
payment from observed traffic. In the deanonymization step, the adver-
sary identifies possible senders and receivers of the observed payment
by running a simulation-based anonymity set reduction.

obtained in Step I. Unlike Step I, this deanonymization
step can be done offline as it does not require any in-
teraction with live networks but only some calculations
with the recorded partial path. Particularly, in Step II-➀,
the adversary simulates payment paths and estimates the
possible range of the amount of the targeted payment.
Then, in Step II-➁, the attacker prunes the LN topology
by removing all channels which either do not support
the estimated amount or do not carry any traffic. The
adversary finally identifies the set of possible senders and
receivers in Step II-➂. Figure 5 shows an example where
the attacker identifies the sender (respectively the receiver)
is in an anonymity set of two nodes (respectively three
nodes).

5. Traffic Monitoring

In the traffic monitoring step, the adversary translates
network-level traffic to corresponding LN traffic as the
inputs for the deanonymization in the next step. Particu-
larly, the attacker composes a list of observed channels
and finds which channels are part of an attacked multi-
hop payment. For this, the adversary observes channel
opening and matches the IP address of the endpoints to

5



A B

open_channel≥ 293 B

funding_created132 B

channel_ready≥ 65 B

accept_channel ≥ 272 B

funding_signed 98 B

channel_ready ≥ 65 B

Figure 6. Transcript of messages for a channel opening from node A to
node B [41]. Message size is shown in Byte (B).

LN node IDs (§5.1). The adversary then identifies ongoing
payments (§5.2) and lastly, groups them into a single
multi-hop payment (§5.3).

5.1. Identifying Observed Channels

The main goal of an adversary here is to identify all
LN channels that she is on at least one BGP path be-
tween two endpoints.3 Knowing the observable channels
is critical for mapping network-level traffic to LN node
IDs and for the deanonymization strategy presented later
in §6. Finding observable LN channels requires running an
LN node to learn the updated LN topology, recording LN
traffic on the wire, and identifying the channels (e.g., their
endpoints). We explain these three steps in more depth as
follows.

Learning the updated topology. By running a node
and listening to gossiping messages in the LN’s P2P net-
work, the adversary learns the entire LN topology and gets
informed whenever other nodes change their addresses or
their channels are updated. The attacker saves the list of
channels and the list of nodes, including their announced
addresses (e.g., IPv4, IPv6, .onion addresses), into her
database.

Recording LN traffic. An adversarial AS can easily
filter LN traffic from all traffic going through her network.
Particularly, the adversary can record any TCP packets
originating from or destined to port 9735, which is the
default port for LN communication [40]. We note that the
attacker cannot observe the communication between two
nodes using Tor as they connect using Tor hidden services,
rendering their traffic encrypted and never leaving the Tor
network. It also means any channels with at least one
endpoint that is not using Tor are observable by Revelio
adversaries.

In LN specifications [40], the communication between
two LN nodes involves multiple messages, each encapsu-
lated in a single TCP packet. Despite the messages being
encrypted under the Noise Protocol Framework [43], they
do not apply any random padding. The adversary, thus,
can use the size of the TCP payload to deduce the LN
message type. Indeed, the payload size is constant for

3. The attacker may not see both traffic directions because of asym-
metrical BGP routing [68].

different messages of the same type, even though the
packets we capture in our experiments are slightly bigger
than in the protocol description [42]. We also note that
some messages may not have a fixed length, yet, their
order in a group of messages and their direction fully
characterize the message types. For example, when the
adversary observes two nodes exchange a 132B-packet
followed by a 98B-packet, the adversary can deduce that
they are opening a channel and then confirm the type of
messages observed before and after these two packets, see
Figure 6. When the adversary observes only one direction
of communication, the same strategy can still be applied.
In short, the adversary AS can easily learn the type of LN
messages sent across the wire.

Identifying channel endpoints. The attacker identi-
fies observed channels by matching the nodes’ announced
addresses with the source and destination addresses of the
recorded packets. If both endpoints of a channel match
with some announced clearnet (i.e., IPv4 or IPv6) ad-
dresses, the adversary can easily identify their correspond-
ing node IDs. However, the addresses observed by the
adversary may not correspond to any announced address
because a node using Tor may establish a channel to a
clearnet node while hiding its address, or unknown nodes
may not advertise their addresses. There are thus four
possible scenarios for the observed channel’s endpoints
when that happens:

(1) clearnet – .onion: The observed channel is between
a node with a clearnet address and a node with a .onion
address if the unmatched address is one of the Tor exit
relays. The adversary can check available channels of
the clearnet node to identify the .onion address and ID
of the other endpoint. Since a clearnet node may have
multiple channels with nodes over Tor, the adversary
should track the channel since its opening by looking for
the channel opening messages on the wire (see Figure 6)
and a channel_announcement message indicating a
new available channel, which has the clearnet address and
a Tor address as endpoints, is circulated via the gossiping
protocol a few minutes later. The adversary then binds the
unmatched address (i.e., a Tor exit relay) to the identified
node for this channel. Our experiments assume that LN
nodes behind Tor use the same circuit (i.e., the exit relay
is unchanged) for the same connection because they want
to maximize the channel’s uptime for better revenue. In
practice, when a different exit relay is used, the adversary
can still observe a disconnection and then the connection
from a new exit relay to the known clearnet address.

(2) clearnet – unknown: Using the same strategy
presented in scenario (1), the adversary can bind the
unmatched address to a node having an unknown address.
The only difference is that the observed address is not a
Tor exit relay. We also assume these unknown nodes do
not change their addresses.

(3) unknown – .onion: The endpoints of the observed
channel here are similar to scenario (1), except that the
observed clearnet address does not match any announced
address from LN nodes. Similarly, the adversary can track
the channel’s opening messages on the wire and look for
a new available channel with an unknown node and a
Tor node as endpoints. When more than one new channel
satisfies such a condition, the adversary can leverage the
timings of channels’ funding transactions on the Bitcoin

6



A B

update_add_htlc1452 B

revoke_and_ack99 B

revoke_and_ack 99 B

update_fulfill_htlc 74 B

commitment_signed164 B

commitment_signed 164 B

commitment_signed 164 B

revoke_and_ack99 B

commitment_signed164 B

revoke_and_ack 99 B

Figure 7. Transcript of messages for a payment from node A to node
B [41]. Message size is shown in Byte (B).

blockchain, which are included in the channel announce-
ment, to tiebreak them. In particular, the funding trans-
action of a new channel opening is broadcasted to the
Bitcoin P2P network immediately after the receipt of the
funding_signed message. Its timestamp can be easily
retrieved from a blockchain explorer or a Bitcoin client.4
The adversary thus can link the observed channel opening
to the closest funding transaction and its corresponding
channel, effectively binding the LN node with the un-
known address to the observed clearnet address.

(4) unknown – unknown: Using the same strategy as
in scenario (3), the adversary can find out the endpoints
of an observed channel with addresses that do not match
any announced addresses or Tor exit relays. Here, the
adversary cannot distinguish these two endpoints to bind
the observed addresses to them until another channel using
the same address is observed and cross-checked.

To summarize, the attacker can identify the node IDs
of the endpoints for all observed channels, either directly
or over the additional attack step. As a result, the attacker
has a list of observed channels and a mapping from IP
addresses to LN node IDs.

5.2. Observing Payments

The adversary also detects LN payments on the
observed channels based on the network-level traffic.
We show the transcript of multiple messages involved
in an LN payment in Figure 7. Since the lengths of
those messages also characterize their type, the adver-
sary can use the same techniques as presented in §5.1,
i.e., relying on the TCP payload length to identify the
messages. For example, the adversary can identify a

4. The broadcasting timestamp of a transaction should not be confused
with the timestamp of the block including it. New transactions are usually
propagated to all Bitcoin nodes in a few seconds; hence the timestamps
recorded by different clients can be slightly different.

new payment made on an observed channel by looking
for the update_add_htlc message with a payload
size of 1452 Bytes. Again, the attack remains feasible
even when the adversary can observe only one direction
of the communication. For instance, when the adver-
sary sees a revoke_and_ack message followed by a
commitment_signed message in the same direction,
she can deduce these are from a payee to a payer without
seeing traffic in the opposite direction.

When the attacker detects a payment on an observed
channel, she records the timestamps of the associated
packets and uses the mapping generated in the previous
step to translate the channel to the node IDs of its end-
points. As a result of this step, the attacker produces a list
of tuples where each detected payment is represented by
a tuple (t, u, v) consisting of the recorded timestamp t of
the first observed message (e.g., update_add_htlc)
as well as of the sender u and the receiver v.

5.3. Grouping Payments into Multi-Hop Pay-
ments

Next, the adversary groups the previously observed
payments into separate multi-hop payments. The main
insight here is that two payments may belong to the same
multi-hop payment if the recorded timestamps of their
packets are close to each other. In a multi-hop payment,
the difference in the packet timestamps recorded at dif-
ferent hops depends on the LN topology (e.g., possible
numbers of nodes between them) and the delays of the
underlying Internet infrastructure. Note that LN clients do
not introduce any additional delay, i.e., they immediately
send messages to the next-hop node on the payment path.
To estimate the latency between two LN nodes, the Rev-
elio attacker uses the methodology proposed by Rohrer et
al., e.g., by sending ICMP ping messages to them [59].
Then, for any two non-neighboring nodes u and v, the
adversary maintains an estimated range of the propagation
time ∆u,v = [tlower, tupper]. This allows the adversary
determine whether two payments with (t0, u0, v0) respec-
tively (t1, u1, v1), where t1 > t0, belong to the same
multi-hop payment. To this end, the adversary computes
the time difference δ = t1 − t0 and groups two payments
if the difference is within the estimated range ∆u0,v1 , i.e.,
tlower ≤ δ ≤ tupper.

Using the same strategy, the adversary iterates through
all recorded payments (t, u, v) and groups them into
multi-hop payments. Each group of messages reflects
one single multi-hop payment at different channels the
adversary observes. Next, for every group of messages
{(t0, u0, v0), (t1, u1, v1), · · · , (tk, uk, vk)}, where t0 ≤
t1 ≤ · · · ≤ tk, the adversary produces an ordered list
of involved LN nodes [u0, v0, u1, v1, · · · , uk, vk]. After
removing all duplicated nodes, the result is a list of nodes
that appear in the multi-hop payment, and their orders
are the same as in the payment path. As not all channels
are observed by the attackers, there might be some nodes
before and after u0 and vk, respectively, or in between
pairs of (u, v). We call this list a partial payment path
and use it as the input for the deanonymization in the
next step.

7



A

C D

E

B

F
G

H
I
J

[10𝟏 − 10𝟕]

[10𝟎 − 10
𝟒 ]

[10𝟑 − 10𝟓] [10
𝟏 −

10
𝟒 ][10 𝟎

− 10 𝟑]

unobservable 
channel

a payment 
is recorded

no payment
is seen

[𝑚𝑖𝑛 − 𝑚𝑎𝑥] channel’s range of 
possible amounts

pruned channel

Legend:

anonymity set

Figure 8. A payment from B → C → D → E → G → I can be
deanonymized by an attacker observing the channels C ↔ D, D ↔ F ,
and E ↔ G.

6. Deanonymizing Sender and Receiver

The attacker builds on the traffic monitoring to
deanonymize the sender and receiver of LN multi-hop
payments. In contrast to the previous step, which requires
interactions with live networks, the deanonymization pro-
cess only consists of the calculations of BGP and LN
payment paths using publicly-available datasets and al-
gorithms. Therefore, this step can be done offline and
separately from the traffic monitoring step. Particularly,
the attacker uses the computed partial payment path as
the reference to estimate the range of possible payment
amounts. The adversary then prunes the LN topology
by removing channels that do not match the observed
traffic or the estimated amounts. Finally, the adversary
deanonymizes the sender and receiver by minimizing their
anonymity sets.

An example. Throughout this section, we present
the intuition of the deanonymization strategy using an
example of a multi-hop payment made through B →
C → D → E → G → I , see Figure 8. In this
example, the adversary monitors the channels C ↔ D,
D ↔ F , and E ↔ G. From the traffic monitoring step,
the adversary detects payments on channel C ↔ D and
channel E ↔ G and then constructs {C,D,E,G} as the
observed partial path of the targeted payment. The attacker
also notes there is no payment seen on channel D ↔ F .
Moreover, the adversary is aware of the publicly avail-
able parameters of all channels, such as their lower (i.e.,
htlc_minimum_msat) and upper bounds (i.e., capacity
or htlc_maximum_msat) on the payment amount.

6.1. Estimating the Payment Amount

The adversary aims to estimate the amount of a tar-
geted payment (amt) based on its partial path. By default,
the payment amount can be any value between 0 and
224−1, which is the limit for channel capacity in LN [41].
Hence, the strategy here is to narrow down a range of
possible amounts R = [rlower, rupper] from [0, 224 − 1].

First, the adversary leverages the parameters of all
channels that appear in the partial path. Particularly, when
LN nodes establish a channel, they determine not only the
channel capacity, which is the sum of their initial funds,
but also the htlc_minimum_msat and (optionally)
htlc_maximum_msat values that respectively impose
the lower bound and upper bound for the payment values
they are willing to forward in the channel. These chan-
nels’ parameters are part of gossiping messages; thus, the
adversary can learn them when taking a snapshot of the

Algorithm 1 Partitioning a given range of amounts into
intervals in which corresponding paths are the same.
Require: S, T : the partial path’s first and last nodes.

rlower, rupper: the lower and upper bounds of possible
amounts for payments from S to T .

Ensure: L = [(P1, l1, u1), · · · , (Pk, lk, uk)]: A list L of
k tuples, each shows that when li ≤ amt ≤ ui, the
path from S to T is Pi.

1: procedure PARTITIONAMOUNTS(rlower, rupper)
2: Plower ← calculatePath(S, T, rlower)
3: Pupper ← calculatePath(S, T, rupper)
4: if Plower = Pupper then ▷ Paths are the same.
5: return [(Plower, rlower, rupper)]

6: rmid ← ⌊(rlower + rupper)/2⌋ ▷ Binary search.
7: Llower ← PARTITIONAMOUNTS(rlower, rmid)
8: Lupper ← PARTITIONAMOUNTS(rmid+1, rupper)
9: L ← Llower + Lupper

10: L ← mergeRangeOfTheSamePath(L)
11: return L

entire LN topology. Because all channels in the partial
path can forward the targeted payment, the adversary can
deduce that amt must be no less than these channels’
capacities. In other words, the attacker sets rupper equal
to the smallest channel capacity in the partial path. Sim-
ilarly, because amt must be larger than the maximum
htlc_minimum_msat and smaller than the minimum
htlc_maximum_msat of all involved channels, the
adversary can set rlower and rupper accordingly. The
example in Figure 8 shows that R can be narrowed down
into [103, 105] thanks to the publicly available parameters
of channels C ↔ D and E ↔ G.

Second, the attacker computes the payment paths from
the first node to the last node in the partial path with
varying payment amounts. The adversary then narrows
the range of possible amounts R to the ones with corre-
sponding paths that match the observed partial path. This
strategy comes from an observation that if two payment
paths between the same endpoints differ, their amounts
must also differ because there cannot be more than one
path for the same amount.5 A naive attacker would com-
pute the paths for every payment amounts possible, which
is not feasible within a reasonable computation time when
rupper can be as high as 224−1. Instead, Revelio adversary
uses a binary search to efficiently calculate the paths with
an assumption that if the payment paths between two
nodes are the same for two amounts, then they are also
the same for all amounts between them. In theory, this
might not be the case as a path could be the cheapest
path for only one specific amount, but unusable for all
other amounts in the same range, e.g., by containing a
channel that supports only this specific amount. As we
will show in §7.2, this rarely occurs, and we thus ignore
it.

We present the pseudo-code of this binary search
in Algorithm 1. Particularly, the adversary partitions the
range of amounts, starting with the [rlower, rupper] from
the previous step (e.g., [103, 105]), into smaller intervals
of amounts so that the computed paths with amounts

5. On the other hand, the cheapest paths for different amounts can be
the same.

8



from the same interval are the same. For each loop, the
attacker computes the paths for the lowest and the highest
amount in the given range. The computation here follows
publicly-available path-finding algorithms in open-source
LN clients. The specific algorithm can be chosen accord-
ingly to the client that the nodes are running [59]. If the
paths are the same, all paths are the same for all other
amounts in that range, which is marked as an interval
(c.f. line 5). Otherwise, the adversary recursively applies
the binary search for the lower and upper halves of the
current range until all intervals of amounts are found. The
attacker finally merges the intervals of the same path Pi

to form its continuous range of [li, ui] (c.f. line 10). The
final output of this amount estimation step is a list L
of intervals of possible amounts and their corresponding
paths. For instance, by running Algorithm 1, the adversary
may learn that if the amount of the targeted payment is
within [103, 104], the path would be {C,D, F,G} (e.g.,
because channel F ↔ G imposes less fee than channel
E ↔ G) and when it is within [104 + 1, 105], the path
would be {C,D,E,G}, see Figure 8.

6.2. Pruning Channels

With the possible paths and their corresponding ranges
of possible amounts, the adversary can prune all channels
in the LN topology that do not carry payment traffic or do
not support an amount within these ranges. Specifically,
the adversary compares the computed paths in each inter-
val of amounts with the given partial path and removes
them if nodes in the partial path do not appear in the same
order in the computed paths. For example, in Figure 8,
the path cannot be {C,D, F,G} because channel D ↔ F
is observable, yet no correlating payments are seen. The
amount of the targeted payment thus cannot be within
[103, 104]. In the same example, with the possible amounts
now narrowed down into [104+1, 105], the adversary can
prune channels with a capacity lower than 104 + 1 or
htlc_minimum_msat parameter higher than 105, such
as channels A ↔ C and G ↔ H . The result of this
pruning step is a simplified LN topology that includes
only possible channels for the targeted payment.

6.3. Identifying Sender and Receiver Anonymity
Sets

The attacker identifies the sender and receiver
anonymity sets of the targeted payment based on the
pruned LN topology. At a high level, the adversary splits
the nodes in the LN graph into two components such that
they contain the first (e.g., node C in Figure 8), respec-
tively the last node (e.g., node G) of the partial path. The
two components are only connected via a payment path
that matches the observed partial path. More specifically,
the adversary first creates an initial anonymity set for
the sender and receiver, which contains all LN nodes.
The adversary then removes nodes that cannot reach to
the first node, respectively from the last node, on the
partial path because of pruned channels. Following this,
the adversary removes nodes from their anonymity sets if
their corresponding paths do not match the partial path.
The intuition here is that the sender, respectively receiver,

S VU T

Intermediate nodes on
LN testnet

Figure 9. Topology setup for payment grouping experiment. Our nodes
S and T connect to five other nodes, which also connect to form a near
full mesh, on LN testnet. The attacker aims to group payments observed
at channels S ↔ U and V ↔ T into multi-hop payments.

of the payment must be in the same connected component
as the first, respectively the last hop of the observed partial
path. In Figure 8, the final sender and receiver anonymity
sets are {B,C} and {G, I, J}, respectively.

7. Evaluation

This section evaluates the two phases of the Revelio
attack. First, we show that traffic monitoring, e.g., detect-
ing and grouping payments into multi-hop payments, is
indeed feasible in live network settings (§7.1). Second,
we evaluate the effectiveness of the deanonymization step
via several thousands of simulations (§7.2), showing that
the attack is successful in up to 32.34% of cases.

7.1. Effectiveness of the Traffic Monitoring

This subsection shows that monitoring LN traffic to
identify multi-hop payments is practical. We present the
experiment setup and show that traffic monitoring for
payment grouping succeeds in realistic scenarios.

Experiment setup. We perform controlled traffic
monitoring experiments in a small network of LN nodes.
Note that evaluating this attack step at the scale of the
entire LN network is challenging without controlling an
AS because traffic monitoring requires capturing packets
on the wire. We depict the topology of this network in
Figure 9. In particular, we control two LN nodes S and
T , running lnd version 0.14.0 on two separate virtual ma-
chines (VMs). We establish channels from these two nodes
to a cluster of five intermediate nodes, each advertising an
IPv4 address. The five intermediate nodes are connected
in a full mesh except for one missing channel.6 Moreover,
these nodes are located in four different regions, i.e.,
Europe, Oceania, North America, and South America.
With the widespread locations of the intermediate nodes,
we can thus capture the realistic delays of LN payments
in practice. We run this experiment on LN testnet, a
testing network that mimics the main network (mainnet)
and dedicates to testing purposes.

To implement a Revelio adversary in our experiment,
we first select two specific nodes from the five nodes on
LN testnet, called U and V . We then capture the traffic
between our nodes and the five nodes by running pcap
on the machine hosting the two VMs and filter the traffic
between S and U , respectively, between V and T . We

6. As we do not control the intermediate nodes, we cannot build a
full mesh.

9



implement an attack script that uses these traffic traces as
inputs, emulating an adversary observing channels S ↔ U
and V ↔ T . In the topology we consider, there are 18
unique paths for multi-hop payments from S to T such
that each path includes at least one channel observed by
the adversary — six paths use only S ↔ U , another
six paths use only V ↔ T , and six paths include both
channels.

In each experiment, we send 200 multi-hop payments
from S to T over a path chosen independently and uni-
formly at random from the set of the aforementioned 18
paths. We leverage the built-in commands of lnd client
(e.g., buildroute, sendtoroute) to construct the chosen pay-
ment path and send the payment along this path. The
main goal of the adversary here is to group the traffic
traces collected at channels S ↔ U and V ↔ T into indi-
vidual multi-hop payments. When the adversary correctly
identifies that either only channel S ↔ U , only channel
V ↔ T , or both of the channels appear on a payment path,
we consider it as a correct grouping. We let the overall
success rate of channel grouping be the number of correct
guesses divided by the number of payments.

In all experiments, we consider a range of delay be-
tween S and T is ∆S,T = [0.8 s, 2.2 s], which is measured
using the methodology proposed by Rohrer et al. [59]. We
also send transactions with a fixed rate of 0.1 tx/s, causing
the adversary to observe, on average, one transaction every
15 seconds (or 0.066 tx/s) on each of channels S ↔ U
and V ↔ T . We chose the transaction rate of 0.066 tx/s
per channel because the transaction rate in today’s LN
network is likely to be much lower. Although there is no
prior study on the average transaction rate of the entire LN
network, one can estimate it from publicly available data
reported by large entities. For example, LNBIG reports
an extraordinarily high volume of LN payments with
11,510 transactions recorded on April 26, 2022 [45]. Since
LNBIG controls about 7000 channels, this converts into
a per-channel transaction rate of 0.000019 tx/s (or each
channel sees one transaction every 14 hours). Even when
we do not consider a uniform transaction rate throughout
the day and channels but a bursty one, e.g., all transactions
happen within one hour and within 10% of all channels,
the transaction rate would only be 0.004 tx/s per channel
(or each channel sees one transaction every 4 minutes).

To evaluate the effectiveness of traffic monitoring,
we focus on two aspects. First, we test if channels and
payments can be detected from packet traces. Second, we
compare the effectiveness of payment grouping in varying
settings as follows.

• Attack strategies: Recall that the adversary must
identify what channel(s), i.e., only S ↔ U , only
V ↔ T , or both, are included on a targeted
payment path. With a random guessing strategy,
one can already achieve an expected success rate
of 1

3 . Hence, our grouping strategy using estimated
delay must have a higher success rate than 1

3 to
be considered effective.

• Observed communication direction(s): We also
test different attack capabilities in terms of the
observed communication directions. Particularly,
for each of the two channels S ↔ U and V ↔ T ,
we create two scenarios, i.e., the adversary sees

0.2 0.4 0.6 0.8 1.0 1.2
Transaction rate per channel (tx/s)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Figure 10. The success rate of payment grouping with varying per-
channel transaction rates. The attacker can always group payments
correctly with payment rates of below 0.33 tx/s per channel.

only direction from payer to payee or vice versa.7
In total, we have four different scenarios of attack
capabilities.

• Transaction rate: One of the main factors for
the effectiveness of the payment grouping is the
transaction rate per channel, that is, if there are
too many payments on the same channel in a
short amount of time, it is hard for an adversary
to separate them since the encrypted traffic is
indistinguishable. We, therefore, test the success
rate of channel grouping for varying per-channel
transaction rates.

Results. We found that it is trivial to identify channels
and detect payments from packet traces. Particularly, the
source IP addresses encoded in the packets sent by the
five nodes on LN testnet do match with their gossiped
addresses in the LN’s P2P network. Also, LN traffic can
be easily filtered by the port number (i.e., 9735) included
in the packets’ header and the size of the packets’ payload
clearly reveals the type of the carrying LN messages as
well as the payment direction (c.f. Figure 7).

With the per-channel payment rate of 0.066 tx/s, our
Revelio adversary can correctly group payments in all
cases, that is, achieving a success rate of 100%. Compared
to an attacker with the random guessing strategy (i.e.,
with a success rate of 1

3 ), our attacker demonstrates a
clear advantage. This result holds true even when the
adversary sees only one direction of the communication
on the observed channels.

We present the success rate of channel grouping with
varying transaction rates per channel in Figure 10. It
shows that the adversary can perfectly group payments
(i.e., maintaining the success rate of 100%) with a per-
channel transaction rate of up to 0.33 tx/s. The success rate
drops to 42% when the transaction rate approaches 0.66
tx/s (or two transactions every 3 seconds). We also notice
the attack becomes ineffective as it performs worse than
random guessing when the transaction rate is higher than
0.83 tx/s per channel. While this transaction rate may look
small at first, it is in fact, 4-orders of magnitude larger than
the estimated average transaction rate in current LN (i.e.,
0.000019 tx/s per channel). More concretely, assuming the

7. We skip the scenario where the adversary sees both directions
because only messages from payer to payee are used for easier detection.

10



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Amount (sat)

Top 1

Top 2

Top 3

Top 4

Top 5

103 sat

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Amount (sat)

Top 1

Top 2

Top 3

Top 4

Top 5

104 sat

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Amount (sat)

Top 1

Top 2

Top 3

Top 4

Top 5

105 sat

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Amount (sat)

Top 1

Top 2

Top 3

Top 4

Top 5

106 sat

Figure 11. Attackers with a broader view can estimate payment values more accurately. The plot shows, for different payment amounts (marked
with ×), the average estimated lower bound and upper bound (blue boxes), and the best estimated range with the least discrepancies compared to
the actual amount (orange boxes).

transaction rate in LN doubles annually [5], it will take
about 15 years to render Revelio attack ineffective.

7.2. Effectiveness of the Deanonymization Attack

Here, we evaluate the effectiveness of the
deanonymization step. We first introduce the experiment
setup, focusing on our simulation framework. Then,
we present the effectiveness of the payment amount
estimation as well as how effectively the attacker can
reduce the anonymity sets of the sender and receiver.

Experiment setup. We evaluate the deanonymization
attacks at the scale of the entire LN topology because
they do not require interaction with live networks as in the
traffic monitoring experiments but only some LN payment
path calculation and BGP simulation.

In our evaluation, we simulate thousands of multi-hop
payments on the actual LN topology. First, we consider
four payment amounts that are also considered in prior
works (e.g., [59], [79]), i.e., 103, 104, 105, 106 sat. By the
time of writing, these values correspond to roughly 0.2
to 200$, respectively. A payment simulation chooses a
random amount among these values and a random pair of
LN nodes as the sender and receiver. We ensure a uniform
distribution of the number of senders and receivers here,
i.e., each node is equally likely to send and receive pay-
ment. To calculate the multi-hop payment path from the
sender to the receiver in each simulation, we adapt the
Python codebase of Electrum [76] wallet, which closely
reflects the algorithms of lnd clients. This path-finder takes
the previously collected snapshot of the LN topology as
input and returns the payment paths between any two
nodes. Note that we choose the path-finding algorithm of
lnd in our experiments simply because the vast majority
of the clients (> 91%) are running it [49].

We evaluate the attack effectiveness in five different
scenarios of the adversary. In particular, we consider “Top

n” adversaries, where n ASes with the broadest view,
i.e., the ASes which can see the most channels (c.f.
Section 3), collude. We vary the number of colluding
ASes from one to five (i.e., Top 1 to Top 5) since
the cumulative percentage of observed channels stagnates
after five colluding ASes. In each attack scenario, we
simulate 1008 payments. For every payment, we calculate
the LN payment path, compute the BGP paths between
any two consecutive nodes (c.f. Section 3), and mark the
corresponding channels as observed by the adversaries if
the BGP paths include a malicious AS. We assume that
the channel grouping in the previous step is successful,
meaning that the adversaries can perfectly construct a
partial path consisting of the channels they observe for
a targeted multi-hop payment.

We run our deanonymization attacks on a server
with 48 cores of AMD EPYC™ 7742 CPU running at
2.25GHz, 128 GB of memory, and the Ubuntu 18.04.6
LTS operating system. A single payment deanonymization
in one attack scenario, including the LN payment path
computation and BGP simulation, is complete within 30
seconds on average.

Results. In Figure 11, we show the estimated range of
payment amounts in different attack scenarios versus the
actual payment amounts. For each adversary (e.g., Top
5 attacker) and a payment amount (e.g., 103 sat), we
show the original range (i.e., [0, 224 − 1]), the average
estimated lower bound and upper bound, and the best
estimated range with the least discrepancies compared to
the actual amount. Figure 11 shows that the Top 5 attacker
who has the most comprehensive view of the LN topology
can limit the amount to a range of fewer than 5 magni-
tudes in the median. For amounts of 105 sat and 106 sat,
the attacker often guesses exactly the magnitude of the
payment amount. This result demonstrates a worrying
threat as payments of high amounts are considerably more
sensitive than payments of smaller amounts. Figure 11

11



Top 1 Top 2 Top 3 Top 4 Top 5

0

2500

5000

7500

10000

12500

15000

17500

A
no

ny
m

ity
se

ts
iz

e

Sender

Top 1 Top 2 Top 3 Top 4 Top 5

Receiver

Figure 12. While the anonymity sets are large, the attacker achieves
better reduction with an increasing view.

Top 1 Top 2 Top 3 Top 4 Top 5
0

25

50

75

100

Pe
rc

en
ta

ge
(%

)

Massive failure

Perfect success

Sender

Top 1 Top 2 Top 3 Top 4 Top 5

Massive failure

Perfect success

Receiver

Figure 13. The attack is a serious threat, e.g., the Top 5 ASes reduce the
anonymity sets to one (perfect success) for more than 30% of observed
payments. Massive failure denotes anonymity set sizes above 10,000.

further suggests that an attacker such as Top 1 that sees a
comparably smaller fraction of channels naturally fails to
guess accurate lower bounds more frequently. As we can
see in the Top 2 and 3 scenarios, an increasing number of
observed channels increases the effectiveness of the attack.
More generally, we observe that the magnitude of the
estimated upper bounds is closer to the payment amount
compared to the lower bounds. Our attack also almost
certainly includes the payment amount in the estimated
range. Particularly, the actual amount is not included in
the estimated range in only less than 0.2% of the tested
scenarios.

We now focus on the attack effectiveness in
deanonymizing payments, as shown in Figure 12. The
distribution of the sizes of the anonymity sets suggests that
the attacker can only hardly deanonymize the sender or the
receiver: The median size of the anonymity sets is higher
than 10,000 in all scenarios. However, when looking at
Figure 13, we see that appearances are deceptive: The at-
tack either perfectly succeeds (i.e., reducing the anonymity
set size to 1) or massively fails (i.e., the anonymity set size
remains higher than 10,000) to deanonymize senders and
receivers. Even in the Top 1 scenario, the attacker achieves
in almost 15%, respectively 16% to deanonymize the
sender, respectively, the receiver. Similar results hold for
the attack in the Top 2 and the Top 3 scenarios where the
success rates increase up to 24% and 22%, respectively.
If even more ASes collude (i.e., the Top 5), then up to
32% of all receivers can be perfectly deanonymized.

These results show that the Revelio attack not
only estimates the payment amount effectively but also
deanonymizes a significant fraction of senders and re-
ceivers of payments.

8. Discussion

In this section, we discuss several key points. We
first explain why the limitations of the Revelio attack do
not hinder its practicality (§8.1). We then highlight the
inherent weaknesses of LN that have been the root causes
for not only Revelio but also for many existing privacy
attacks against it (§8.2). Some of these weaknesses exist
in many other overlay networks, suggesting the possibility
of generalizing Revelio into a more prominent family
of privacy attacks. Based on the discussed root causes,
we further present both readily deployable defenses and
longer-term countermeasures to the Revelio attack (§8.3)
Finally, we present the ethical considerations in this paper
(§8.4).

8.1. Revelio’s Limitations

We discuss two limitations of the proposed Revelio
attack, that is, traffic to Tor’s hidden services is unob-
servable, and the exact payment amount is unknown. We
discuss how these limitations can be addressed and why
our attack is still a serious threat for privacy in LN.

Observing Tor’s hidden services. The proposed Rev-
elio attack does not apply to channels with both endpoints
using Tor because the communication from one node to
the other’s hidden service is additionally encrypted. To
observe these channels, adversaries with extended capabil-
ities can launch additional attacks against Tor hidden ser-
vices, such as running malicious entry guards [13], [37],
[44], [55], disrupting guard nodes selectively [32], exploit-
ing side-channels [50], and fingerprinting traffic [30], [56].
When that happens, the adversaries will have a much more
comprehensive view of the LN topologies, and the attack
effectiveness will thus be drastically increased. Therefore,
we consider the current results as a lower bound with
respect to this limitation and leave the adaptation of
additional attacks for future works.

Learning the exact payment amount. Our evaluation
in Section 7.2 shows that the Revelio adversary usually
ends up with a notable range of possible values, which
inherently leads to insignificant anonymity set reduction.
Here, we note a few practical ways to learn the exact
payment amount, although the attack requires extra steps
and may not remain passive. For example, the adversary
can specifically target popular services, such as pod-
casts, streaming, or social apps, that publicly announce
their payment amounts. Moreover, Revelio adversaries can
launch channel probing attacks [12], [20], [71], [81] to
monitor the balance of all channels. Yet, such an attack
requires having LN nodes sending actual payments, and
it may cost several thousand dollars for every probing.
Alternatively, the adversary can run an intersection attack
(e.g., [10], [22]) when observing the same payment mul-
tiple times. Lastly, the adversarial AS can further tighten
the range of possible amounts by looking for payment
failures that happen due to insufficient balance and cause
a different routing path (i.e., with extra boundary con-
ditions) to be chosen.8 Indeed, if the same node issues
another payment within a short time, the adversary can
deduce that the same amount is routed twice.

8. In case of payment failure, update_fail_htlc messages (≥
44B) are sent instead of update_fulfill_htlc messages.

12



8.2. LN’s Inherent Weaknesses

LN is designed to provide better payment privacy
than Bitcoin. Unfortunately, it still has several inherent
weaknesses that render many privacy attacks, such as
Revelio, possible. While some of the weaknesses pertain
to the LN protocol and can be hardened with short-term
defenses or removed with long-term countermeasures,
some others pertain to the inherent vulnerability of the
Internet infrastructure and are harder to fix.

LN protocol. Since LN is permissionless, an attacker
can easily create many nodes in the LN topology and
observe a large portion of multi-hop payments forwarded
by them. This weakness has been the root causes of several
existing attacks that deanonymize payment endpoints [59],
[66], or channel balances [12], [20], [71], [81].

With the cheapest-path routing mechanism, the LN
network becomes centralized with a small number of high-
degree nodes [77] and, thus, is prone to structural attacks,
such as route hijacking (and payment deanonymization
as a follow-up attack) [72], or Revelio attacks in which
malicious ASes see much of LN traffic.

The open-source routing algorithms also let Revelio
attackers easily simulate payments. The LN’s topology,
including channels’ parameters, is publicly available to
any node joining the network, thus enabling the Reve-
lio adversary to confirm observable channels as well as
deanonymize payment amounts (c.f. Section 6).

End-to-end communication. Revelio adversaries can
easily filter out LN traffic due to the usage of a fixed
port number (i.e., 9735). Moreover, LN utilizes the
Noise Protocol Framework with ChaChaPoly-1305 as
the encryption scheme for the communication between
nodes [43]. Initially, ChaChaPoly and AES encryp-
tion schemes were the two options considered by LN
developers due to their wide adoption [61]. Eventually,
ChaChaPoly was selected for implementation as it can
be up to three times faster than AES [52]. However,
ChaChaPoly-1305 is not length-hiding, i.e., the length
of the ciphertext reveals the approximate length of the
plaintext. The Revelio attack exploits this weakness to
learn the type of LN messages even when encrypted.

Internet routing. Connections between LN nodes
are inherently routed over multiple ASes, enabling Rev-
elio attacker to perform the traffic analysis in the first
place. Many existing attacks, such as against Bitcoin [3],
Crowds [78], I2P [24], Tor [23], [26], [33], [37], follow
the same spirit, that is, combining the access to the
Internet infrastructure with application-layer information
for deanonymization attacks. Such cross-layer attacks are
stealthy as they are usually passive and challenging to
be mitigated since they do not rely on inherent protocol
shortcomings. This suggests the possibility of generalizing
Revelio and similar attacks into a family of passive attacks
against privacy of overlay networks. We leave a detailed
analysis of this family of attacks for future work.

8.3. Countermeasures

Guided by the discussed root causes, we now suggest
countermeasures against the Revelio attack.

Patching LN protocols. To prevent the Revelio ad-
versaries from simulating payment paths, LN routing al-

gorithms can be made more unpredictable. For example,
nodes can select one out of the k best paths to the destina-
tions. A sufficiently large k would render deanonymizing
the sender or receiver ineffective due to their prohibitive
anonymity sets. This parameter k should be carefully
tested, since if k is too small (e.g., 3 in eclair clients [1]),
the obfuscation becomes ineffective [59]. In practice, such
a multi-path routing mechanism may have higher payment
fees, lower routing success rates, and longer routing paths
if k best paths have different costs.

To contribute towards a less centralized LN network,
nodes may follow suggestions from Weintraub et al. and
avoid unknown nodes that pay the complete transaction
fees when establishing channels [77].

The Revelio adversaries can only deanonymize pay-
ment amounts if they know the topology (e.g., available
channels and their parameters). Eradicating this informa-
tion from the protocol is impractical because the source-
based payment routing in LN relies on it to be functional.
Still, particular LN nodes that do not route payments (e.g.,
as a service) can render Revelio attacks against them more
difficult by not broadcasting their channel information to
the P2P network. Revelio adversaries may still observe
their traffic, yet, with less information regarding their
possible payment amounts.

Hardening end-to-end communication. Revelio ad-
versaries cannot identify the LN message types if an-
other length-hiding encryption scheme (e.g., with ran-
dom padding) is used instead of ChaChaPoly-1305. A
caveat for such an encryption scheme is a non-negligible
delay added to the end-to-end communication between LN
nodes. Moreover, it does not rule out the possibility of
more sophisticated traffic analysis attacks (e.g., based on
packet count [38], [64]), which is beyond the scope of this
paper.

To make traffic filtering based on port numbers (e.g.,
9735 in LN) harder, nodes can use random ports to com-
municate after negotiation over the default port [4]. The
transition between ports should be properly obfuscated
(e.g., with some randomized delays) so that no commu-
nication pattern (e.g., a new port is open shortly after a
communication over the default port) exists.

Avoiding adversarial ASes. Common defenses to
mitigate network-based traffic analysis attacks like Rev-
elio include using third-party proxies (e.g., Tor, VPNs)
and incorporating AS-awareness into payment routing
decisions. Indeed, the proposed Revelio attack does not
apply to channels between two LN nodes running Tor
hidden services. However, strictly hiding behind a Tor
hidden service is not foolproof against all attacks (c.f.
§8.1). Moreover, routing multi-hop payment over several
Tor relays between each hop may notably increase the
payment latency. Proxies like VPNs provide an alternative
technique for LN nodes to prevent their hosting ASes from
analyzing their traffic while connecting to other nodes.
Nevertheless, multi-hop payments are still partially ob-
servable by Revelio adversaries unless all nodes along the
paths also use proxies. Unfortunately, providing proxies to
tens of thousands of LN nodes is challenging in practice
and allows deanonymization attacks from popular VPN
services when most connections are routed through them.

To avoid specific ASes on the payment path, the LN
routing algorithm can be AS-aware, that is, to take the

13



AS paths between consecutive nodes into account. AS-
awareness in Tor and Bitcoin shows that this defense
works in most cases, although its inaccuracies may en-
able more sophisticated attacks and requires additional
application-based countermeasures [73].

Combining network information (e.g., AS paths be-
tween LN nodes) and defenses at other layers suggests a
recipe to counter the discussed family of passive attacks.
That is, cross-layer attacks require combining countermea-
sures from multiple layers to be effective. The complete
exploration of such generic defenses for overlay networks
is an exciting avenue for future work.

8.4. Ethical Considerations

Guided by ethical principles of the Menlo Report [7],
we minimized interacting with all productive systems.
First, we solely used the LN’s testnet, a testing network
that is completely segregated from the productive net-
work (i.e., mainnet), for experimenting with the feasibil-
ity of the payment grouping attack (c.f. §7.1). Second,
our deanonymization attack was tested exclusively using
simulation (c.f. §7.2) and with the publicly available LN
topology (c.f. §3). Third, we did not interact with the Tor
network — exit nodes are selected based on statistical data
provided by the Tor project itself [69].

9. Related Work

9.1. Studies on LN’s P2P Topology

The P2P topology of LN has been an active topic of
study. Martinazzi observed the long-standing high degree
nodes after analyzing the first year data of the LN topol-
ogy [48]. Seres et al. show that LN’s topology is resilient
against random failures yet structurally vulnerable to ad-
versaries controlling important nodes [63]. Rohrer et al.
re-confirm this finding via a more detailed analysis [58].
A recent study shows that a significant fraction of the
transactions is still handled by a few highly influential
nodes, and the centrality of LN topology has been increas-
ing over the years [79]. The centralization of LN topology
can also be observed by looking at the nodes’ geographical
locations [80] or hosting ASes [17]. Our LN’s AS-level
topology analysis (c.f. §3) complements these prior studies
since we consider all LN nodes (i.e., both with public IPs
and behind Tor) as well as the ASes on the routing path
between any two nodes.

9.2. Privacy Attacks in the LN

We highlight prior attacks that also target privacy in
the LN particularly. For discussions about other attacks
in the LN, in other payment channel networks, and in a
broader scope of other cryptocurrencies, we refer readers
to the comprehensive studies by Tikhomirov et al. [70],
by Gudgeon et al. [29], and by Bonneau et al. [14],
respectively.

Our work is closely related to deanonymization attacks
that target the privacy of LN payments. Béres et al.
observe the short payment paths may statistically reveal
their endpoints from their LN traffic simulator [9]. Built

upon this finding, Kappos et al. show that an adver-
sary can achieve reasonable accuracy by simply guessing
the immediate predecessor (respectively, successor) is the
sender (respectively, receiver). Given the centralization of
LN topology, 1% of top degree nodes can collude and
confidently identify the payment originators in a quarter of
observed payments using Bayesian inference [66]. By sim-
ulating the payment routing of popular LN clients, a mali-
cious LN node on the payment path can deanonymize the
payment endpoints with high precision [36]. Alternatively,
Rohrer et al. show that on-path adversarial nodes can also
launch timing attacks on the received LN messages to
infer the payment’s sender and receiver [59]. While the
Revelio attack comprises some similar strategies, such as
timing analysis and simulating payment routes, it does not
require active participation in the payments and, thus, is
stealthier than existing attacks.

There is also a line of attacks that target the privacy
of LN channels and nodes. Nowostawski et al. identify
channel opening and closing by looking for specific Bit-
coin transaction types on the blockchain [54]. Kappos et
al. use the same methodology to identify private channels
(i.e., between two unknown LN nodes) [34]. These on-
chain transactions can further be used to cluster Bitcoin
wallets and LN nodes into the same entity [60]. Aiming
to learn the channel balances (e.g., that lead to large-scale
payment deanonymization [34]), several probing attacks
have been proposed. The strategies include sending pay-
ments through that channel that trigger failures [31], [53],
[71], [81], sending payments only between adversarial
nodes [20], [34], and jamming the channels when nodes
have multiple channels in parallel [12].

9.3. Network-level Privacy Attacks

The Perimeter attack [3] has the same attack ca-
pabilities (e.g., being an AS) and a similar goal (i.e.,
deanonymizing cryptocurrency transactions) as our attack.
However, the Revelio attack is purely passive and works
in the presence of Tor-based connections, whereas Perime-
ter only works with unencrypted traffic or with extra
connections to the victim’s peers. Besides cryptocurren-
cies, anonymous overlay networks like Tor have been
the prominent target for network-level privacy attacks
(e.g., [23], [26], [33], [37], [68]). Like Revelio, these
attacks commonly deanonymize users by analyzing the
observed Tor traffic. For an extended discussion on other
network-level attacks, interested readers are referred to a
recent article by Sun et al. [67].

10. Conclusion

The Lightning Network has significantly contributed
to cryptocurrency adoption thanks to its cheap, fast, and
anonymous payments. This paper challenges payment pri-
vacy in the LN with a new threat of AS-level adversaries,
who stealthily analyze network traffic. Our evaluation of
the real-world data shows that LN topology is worryingly
centralized at the AS-level, which allows almost one-third
of payments to be deanonymized by this novel attack. We
hope this work guides the direction for developing ad-
ditional countermeasures against network-level attacks in
not only the LN but also other payment channel networks.

14



References

[1] ACINQ, Eclair, 2023. https://github.com/ACINQ/
eclair.

[2] J. Angwin, C. Savage, J. Larson, H. Moltke, L.
Poitras, and J. Risen, “AT&T Helped U.S. Spy on
Internet on a Vast Scale,” The New York Times,
2015.

[3] M. Apostolaki, C. Maire, and L. Vanbever,
“Perimeter: A Network-Layer Attack on the
Anonymity of Cryptocurrencies,” in FC, 2021.

[4] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijack-
ing Bitcoin: Routing Attacks on Cryptocurrencies,”
in IEEE S&P, 2017.

[5] Arcane Research, “The State of Lightning: Volume
2,” 2022.

[6] A. Arnbak and S. Goldberg, “Loopholes for Cir-
cumventing the Constitution: Warrantless Bulk
Surveillance on Americans by Collecting Network
Traffic Abroad,” in HotPETs, 2014.

[7] M. Bailey, D. Dittrich, E. Kenneally, and D.
Maughan, “The Menlo Report,” IEEE S&P, 2012.

[8] P. Bajpai, E. Rasure, and V. Velasquez, Countries
Where Bitcoin Is Legal and Illegal, 2022. https :
/ / www. investopedia . com / articles / forex / 041515 /
countries-where-bitcoin-legal-illegal.asp.

[9] F. Béres, I. A. Seres, and A. A. Benczúr, “A Cryp-
toeconomic Traffic Analysis of Bitcoin’s Lightning
Network,” Cryptoeconomic Systems, 2021.

[10] O. Berthold, A. Pfitzmann, and R. Standtke, “The
Disadvantages of Free MIX Routes and How to
Overcome Them,” DIAU, 2001.

[11] H. Birge-Lee, Y. Sun, A. Edmundson, J. Rexford,
and P. Mittal, “Bamboozling certificate authorities
with BGP,” in USENIX Security, 2018.

[12] A. Biryukov, G. Naumenko, and S. Tikhomirov,
“Analysis and Probing of Parallel Channels in the
Lightning Network,” in FC, 2022.

[13] A. Biryukov and S. Tikhomirov, “Deanonymiza-
tion and Linkability of Cryptocurrency Transactions
Based on Network Analysis,” in IEEE EuroS&P,
2019.

[14] J. Bonneau, A. Miller, J. Clark, A. Narayanan,
J. A. Kroll, and E. W. Felten, “Sok: Research
perspectives and challenges for bitcoin and cryp-
tocurrencies,” in IEEE S&P, 2015.

[15] CAIDA, AS Relationships Dataset, 2022. https: / /
www.caida.org/catalog/datasets/as-relationships/.

[16] CAIDA, Internet eXchange Points (IXPs) Dataset,
2022. https://www.caida.org/catalog/datasets/ixps/.

[17] P. Casas, M. Romiti, P. Holzer, S. B. Mariem,
B. Donnet, and B. Haslhofer, “Where is the
Light(ning) in the Taproot Dawn? Unveiling the
Bitcoin Lightning (IP) Network,” in IEEE Cloud-
Net, 2021.

[18] Coincub, Coincub annual crypto tax ranking 2022,
2022. https://coincub.com/ranking/coincub-annual-
crypto-tax-ranking-2022/.

[19] Core Lightning, CLN, 2023. https : / / github. com/
ElementsProject/lightning.

[20] G. van Dam, R. A. Kadir, P. N. E. Nohuddin,
and H. B. Zaman, “Improvements of the Balance

Discovery Attack on Lightning Network Payment
Channels,” in IFIP SEC, 2020.

[21] G. Danezis and I. Goldberg, “Sphinx: A Compact
and Provably Secure Mix Format,” in IEEE S&P,
2009.

[22] G. Danezis and A. Serjantov, “Statistical Disclosure
or Intersection Attacks on Anonymity Systems,” in
IH, 2005.

[23] M. Edman and P. Syverson, “AS-awareness in Tor
path selection,” in ACM CCS, 2009.

[24] C. Egger, J. Schlumberger, C. Kruegel Kruegel,
and G. Vigna, “Practical Attacks Against the I2P
Network,” in RAID, 2013.

[25] G. Fanti and P. Viswanath, “Deanonymization in
the Bitcoin P2P Network,” in NeurIPS, 2017.

[26] N. Feamster and R. Dingledine, “Location diversity
in anonymity networks,” in ACM WPES, 2004.

[27] B. Gellman, C. Timberg, and S. Rich, “Secret NSA
documents show campaign against Tor encrypted
network,” The Washington Post, 2013.

[28] P. Gill, M. Schapira, and S. Goldberg, “A survey
of interdomain routing policies,” ACM SIGCOMM
CCR, 2013.

[29] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. Mc-
Corry, and A. Gervais, “Sok: Layer-two blockchain
protocols,” in FC, 2020.

[30] J. Hayes and G. Danezis, “k-fingerprinting: A Ro-
bust Scalable Website Fingerprinting Technique,” in
USENIX Security, 2016.

[31] J. Herrera-Joancomarti, G. Navarro-Arribas, A.
Ranchal-Pedrosa, C. Perez-Sola, and J. Garcia-
Alfaro, “On the difficulty of hiding the balance
of lightning network channels,” in ACM AsiaCCS,
2019.

[32] R. Jansen, F. Tschorsch, A. Johnson, and B.
Scheuermann, “The Sniper Attack: Anonymously
Deanonymizing and Disabling the Tor Network,”
in NDSS, 2014.

[33] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and
P. Syverson, “Users Get Routed: Traffic Correlation
on Tor by Realistic Adversaries,” in ACM CCS,
2013.

[34] G. Kappos, H. Yousaf, A. Piotrowska, et al., “An
Empirical Analysis of Privacy in the Lightning
Network,” in FC, 2021.

[35] P. Koshy, D. Koshy, and P. McDaniel, “An analysis
of anonymity in bitcoin using P2P network traffic,”
in FC, 2014.

[36] S. P. Kumble, D. Epema, and S. Roos, “How light-
ning’s routing diminishes its anonymity,” in ARES,
2021.

[37] A. Kwon, M. AlSabah, D. Lazar, M. Dacier, and
S. Devadas, “Circuit Fingerprinting Attacks: Pas-
sive Deanonymization of Tor Hidden Services,” in
USENIX Security, 2015.

[38] B. N. Levine, M. K. Reiter, C. Wang, and M. K.
Wright, “Timing Attacks in Low-Latency Mix Sys-
tems,” in FC, 2004.

[39] Lightning Labs, lnd, 2023. https : / / github . com /
lightningnetwork/lnd.

[40] Lightning Network Specifications, BOLT #1: Base
Protocol, 2023.

15

https://github.com/ACINQ/eclair
https://github.com/ACINQ/eclair
https://www.investopedia.com/articles/forex/041515/countries-where-bitcoin-legal-illegal.asp
https://www.investopedia.com/articles/forex/041515/countries-where-bitcoin-legal-illegal.asp
https://www.investopedia.com/articles/forex/041515/countries-where-bitcoin-legal-illegal.asp
https://www.caida.org/catalog/datasets/as-relationships/
https://www.caida.org/catalog/datasets/as-relationships/
https://www.caida.org/catalog/datasets/ixps/
https://coincub.com/ranking/coincub-annual-crypto-tax-ranking-2022/
https://coincub.com/ranking/coincub-annual-crypto-tax-ranking-2022/
https://github.com/ElementsProject/lightning
https://github.com/ElementsProject/lightning
https://github.com/lightningnetwork/lnd
https://github.com/lightningnetwork/lnd


[41] Lightning Network Specifications, BOLT #2: Peer
Protocol for Channel Management, 2023.

[42] Lightning Network Specifications, BOLT #4: Onion
Routing Protocol, 2023.

[43] Lightning Network Specifications, BOLT #8: En-
crypted and Authenticated Transport, 2023.

[44] Z. Ling, J. Luo, K. Wu, and X. Fu, “Protocol-level
Hidden Server Discovery,” in IEEE INFOCOM,
2013.

[45] LNBIG, Payment volume for the last 24 hours,
2022. https : / / twitter . com / lnbig _ com / status /
1518997142374797312.

[46] Z. M. Mao, L. Qiu, J. Wang, and Y. Zhang, “On AS-
level path inference,” in ACM SIGMETRICS PER,
2005.

[47] B. Marczak, N. Weaver, J. Dalek, et al., “An Analy-
sis of China’s “Great Cannon”,” in USENIX FOCI,
2015.

[48] S. Martinazzi, “The Evolution of Lightning Net-
work’s Topology During its First Year and the
Influence Over its Core Values,” 2019.

[49] A. Mizrahi and A. Zohar, “Congestion Attacks in
Payment Channel Networks,” in FC, 2021.

[50] S. J. Murdoch, “Hot or Not: Revealing Hidden
Services by Their Clock Skew,” in ACM CCS, 2006.

[51] G. Nakibly, J. Schcolnik, and Y. Rubin, “Website-
Targeted False Content Injection by Network Op-
erators,” in USENIX Security, 2016.

[52] Y. Nir and A. Langley, “ChaCha20 and Poly1305
for IETF Protocols,” RFC 8439, 2018.

[53] U. Nisslmueller, K.-T. Foerster, S. Schmid, and C.
Decker, “Toward Active and Passive Confidentiality
Attacks On Cryptocurrency Off-Chain Networks,”
in ICISSP, 2020.

[54] M. Nowostawski and J. Tøn, “Evaluating Methods
for the Identification of Off-Chain Transactions in
the Lightning Network,” Applied Sciences, 2019.

[55] L. Øverlier and P. Syverson, “Locating Hidden
Servers,” in IEEE S&P, 2006.

[56] A. Panchenko, A. Mitseva, M. Henze, F. Lanze, K.
Wehrle, and T. Engel, “Analysis of Fingerprinting
Techniques for Tor Hidden Services,” in WPES,
2017.

[57] J. Poon and T. Dryja, “The Bitcoin Lightning Net-
work: Scalable Off-Chain Instant Payments,” 2016.

[58] E. Rohrer, J. Malliaris, and F. Tschorsch, “Dis-
charged Payment Channels: Quantifying the Light-
ning Network’s Resilience to Topology-Based At-
tacks,” in IEEE S&B, 2019.

[59] E. Rohrer and F. Tschorsch, “Counting Down
Thunder: Timing Attacks on Privacy in Payment
Channel Networks,” in ACM AFT, 2020.

[60] M. Romiti, F. Victor, P. Moreno-Sanchez, P. S.
Nordholt, B. Haslhofer, and M. Maffei, “Cross-
Layer Deanonymization Methods in the Lightning
Protocol,” in FC, 2021.

[61] R. Russell, Laundry list of inter-peer wire protocol
changes, Lightning-dev Mailinglist, 2016. https://
lists.linuxfoundation.org/pipermail/lightning- dev/
2016-January/000408.html.

[62] M. Saad and D. Mohaisen, “Three Birds with One
Stone: Efficient Partitioning Attacks on Interde-

pendent Cryptocurrency Networks,” in IEEE S&P,
2023.

[63] I. A. Seres, L. Gulyás, D. A. Nagy, and P. Burcsi,
“Topological Analysis of Bitcoin’s Lightning Net-
work,” in MARBLE, 2020.

[64] A. Serjantov and P. Sewell, “Passive Attack Analy-
sis for Connection-Based Anonymity Systems,” in
ESORICS, 2003.

[65] P. Sermpezis, V. Kotronis, P. Gigis, et al.,
“ARTEMIS: Neutralizing BGP hijacking within a
minute,” in IEEE/ACM Trans. Netw., 2018.

[66] P. K. Sharma, D. Gosain, and C. Diaz, “On the
Anonymity of Peer-To-Peer Network Anonymity
Schemes Used by Cryptocurrencies,” in NDSS,
2023.

[67] Y. Sun, M. Apostolaki, H. Birge-Lee, et al., “Se-
curing internet applications from routing attacks,”
in Communications of the ACM, 2021.

[68] Y. Sun, A. Edmundson, L. Vanbever, et al., “RAP-
TOR: Routing Attacks on Privacy in Tor,” in
USENIX Security, 2015.

[69] The Tor Project, Tor Metrics, 2022. https://metrics.
torproject.org/.

[70] S. Tikhomirov, P. Moreno-Sanchez, and M. Maffei,
“A Quantitative Analysis of Security, Anonymity
and Scalability for the Lightning Network,” in IEEE
EuroS&PW, 2020.

[71] S. Tikhomirov, R. Pickhardt, A. Biryukov, and M.
Nowostawski, Probing Channel Balances in the
Lightning Network, 2020.

[72] S. Tochner, S. Schmid, and A. Zohar, “Hijack-
ing Routes in Payment Channel Networks: A Pre-
dictability Tradeoff,” 2019.

[73] M. Tran, A. Shenoi, and M. S. Kang, “On the
Routing-Aware Peering against Network-Eclipse
Attacks in Bitcoin,” in USENIX Security, 2021.

[74] M. C. Tschantz, S. Afroz, V. Paxson, et al., “Sok:
Towards grounding censorship circumvention in
empiricism,” in IEEE S&P, 2016.

[75] University of Oregon, Route Views Archive Project,
2022. http://archive.routeviews.org/.

[76] T. Voegtlin, Electrum, 2023. https : / / github. com/
spesmilo/electrum.

[77] B. Weintraub, C. Nita-Rotaru, and S. Roos, “Struc-
tural Attacks on Local Routing in Payment Channel
Networks,” in IEEE EuroS&PW, 2021.

[78] M. K. Wright, M. Adler, B. N. Levine, and C.
Shields, “The predecessor attack: An analysis of
a threat to anonymous communications systems,”
ACM TISSEC, 2004.

[79] P. Zabka, K.-T. Foerster, C. Decker, and S. Schmid,
“Short Paper: A Centrality Analysis of the Light-
ning Network,” in FC, 2022.

[80] P. Zabka, K.-T. Förster, S. Schmid, and C. Decker,
“Node classification and geographical analysis of
the lightning cryptocurrency network,” in ICDCN,
2021.

[81] Z. Zhao, C. Ge, L. Zhou, and H. Wang, “Fully Dis-
cover the Balance of Lightning Network Payment
Channels,” in WASA, 2021.

16

https://twitter.com/lnbig_com/status/1518997142374797312
https://twitter.com/lnbig_com/status/1518997142374797312
https://lists.linuxfoundation.org/pipermail/lightning-dev/2016-January/000408.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2016-January/000408.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2016-January/000408.html
https://metrics.torproject.org/
https://metrics.torproject.org/
http://archive.routeviews.org/
https://github.com/spesmilo/electrum
https://github.com/spesmilo/electrum

	Introduction
	Background: Lightning Network
	The AS Topology of LN's P2P Network
	Methodology
	Topology Analysis

	The Revelio Attack
	Threat Model
	Attack Overview

	Traffic Monitoring
	Identifying Observed Channels
	Observing Payments
	Grouping Payments into Multi-Hop Payments

	Deanonymizing Sender and Receiver
	Estimating the Payment Amount
	Pruning Channels
	Identifying Sender and Receiver Anonymity Sets

	Evaluation
	Effectiveness of the Traffic Monitoring
	Effectiveness of the Deanonymization Attack

	Discussion
	Revelio's Limitations
	LN's Inherent Weaknesses
	Countermeasures
	Ethical Considerations

	Related Work
	Studies on LN's P2P Topology
	Privacy Attacks in the LN
	Network-level Privacy Attacks

	Conclusion

